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The equilibrium position of an autonomous system of ordinary differential eq- 
uations is investigated in the critical case of n ‘pairs of pure imaginary roots 

in the simultaneous presence of several resonance relationships. Sufficient con- 

ditions of stability and instability of the equilibrium position in the first non- 

linear order are derived for a special class of systems. Results are extended to 

Hamiltonian systems, Oscillations of a satellite about the position of relative 

equilibrium on a circular orbit is considered as an example. 

1. Let us consider the autonomous system of ordinary differential equations 

% l = Ax:, + X, (ix,), x*' = d&j dt (1.1) 

2* = (5x*, - - *, x27& *), x, = (xl*, - f ., x2%*), x, (0) = 0 

where 2, and X, are 2n -dimensional vectors of the Euclidean space Ean, d is a 

constant square matrix with only pure imaginary eigenvalues * iw, (0, > 0, s = 
1 ,-* *, n) among which there are no multiple eigenvalues, and X,* (x,) are holo- 

morphic functions whose expansions in powers of x* begin with m- th order forms. 
Let system (1.1) have p > 1 resonance relationships of the form 

(St, Py) = 0, v = 1, . . ., p (1.2) 

52 = (01, * * *, c&J, Pv = (Pw * * -7 PWJ 

where Pv is a vector of dimension q (q < n) with integral relatively prime comp- 
onents, x,(v = 1, . . ., p) are arbitrary integral constants at least two of which 

are nonzero, and k is an odd number. 
The case of simultaneous presence of several resonance relationships was previously 

considered in [I -51. 
It was shown in [S] that using the nondegenerate complex linear transformation it 

is possible to reduce system ( 1.1) to the form 

2’ = iox + ,_& x(*) (x, y), y’ = - key + r A, Y’% Y) 
(1.3) 

-Cc , 
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where z and y are complex conjugate vectors, o is a diagonal matrix, and x(l) and 
Y(‘) are complex conjugate vector functions whose components Xc,” and Y’,“’ (s = 
1 t * . ., n) are 2 -6-i order forms of 5 and y. 

Subjecting system (1.3) to a number of successive transformations described in [7] 

and taking into account (1. Z), we obtain 153 in polar coordinates r,, cps (s = 1, . . . , 
?Z) the following normal form of system (1.3) accurate to the first nonlinear terms: 

Fj’ = $ &&j (0,) + 0 (11 r ([(‘+0’s) (1.4) 

r(L’ = 0 (Jl f fJ’*+y, i&- = 0 (J] F JJ’W/~) 

i = 1, - * ‘, q; v = I, . . .) p; a = q + 1, . , ., n 

RV’= R~‘, a,= ~lpijl~j, F==(Fl, . . ..rn) 
z-1 j=l 

Qvj (%) = Gj cos 8, + by1 sin oV, Q$ = dQvj 1 de+ 

(QVJ (h) s 0, if PVj = 0) 

Let us consider the class of model systems (obtainable from (1.4) by rejecting the 
omitted terms) for which 

aYj=O, b,f#O* if &j#O, %?=I., ..*) f&;i=i, . . ..g 
so that 

P P n (1.5) 

’ j ‘=2 
c 

byjRv sin8,, 0,' = 
XXI 

‘ij I Pvj I 
r. 

&COfd$ 

*=1 j=l 
3 

v=1 

j = 1, . . 0) 4; v = 1, . . .) p 

(only the resonance subsystem appears above), 
We shall investigate the equilibrium position of the model system (1.5) with the 

resonance relationships (1.2) satisfied. 
Theorem 1. I.. For the model system (1.5) to have an increasing solution 

of the type of the invariant beam 

rj = kjb (t), kj > 0, j = 1, e . ., q* (1. f;) 

0f = n / 2, g = 1, . . ., po; 0, = --a/ 2, q = po + 1, . . ., p 

(0 < PO < IL) 

it is necessary and sufficient that 

*lj - H2j 
PO P 

k,= H 

11 - f&l 
k or Hti > Hi+ HIJ = c kEj7 H, = 

c 
hi (1.7) 

E=1 rl=b+1 
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t k3 (1.8) b*j = h*ij /&so, RvO = Rv (kl, * * 
j = 1, . . ., q; v = 1, . . .* p 

where kj are some constants. 
P r o o f. Substituting a solution of the form (1.6) into system (1.51 we obtain 

kjb’ = 2Z~bkfa, xj =: 

Evidently solution (1.6) of system (1.5) exists, if such Ic, > 0 can be found that 

kj = (Z~/8l)ler, Xj/O, j = 1, . . ., q (1,9) 

Using (1.8) we express relationships (1.9) in the form (1. ‘7). 
The convene statement is proved similarly. 
Theorem 1. 2. For the model system (1.5) to have an unstable partiticular 

solution of the type of increasing beam 

rib = kub (t), k,, > 0, u = 1, - * * ‘9 !I 
r, = 0, u=g+c...,q (Oepeq) 
6, = 5E 12, g = 1,. * ., po; 0Tj= -n/2, q = f.40 + 1, . . . . E_i 

8~=fn/2,5=rz+1, . . .) EL (O<Fo<,c<P; P>Q 

it is necessary and sufficient that b,, (v = 1, . . ., p; u = 1, . . ., ij) satisfy con- 
ditions (1.7) and (1.8), and that in addition 

P VV=o, v=l,...,F; u=~+I,...,q 

Proof of this is omitted owing to its simplicity, 
These results may be transferred, with some obvious alterations, to the class of 

model systems (1.4) for which 

aVj # 0, bvj = 0, if phi # 0, V = 1, - . -, lu; i = 1, . . ., q 

2. Let us consider in more detail the problem of stability of the equilibrium posit- 
ion of the Hamiltonian system 

. 
x, = @I (2, Y) 

% 
, ,s=-aH;yf, s=l,..., n (2‘ 1) 

s 

when it cannot be solved in linear approximation and the resonance relationships (1.2) 
are valid. 

Let us assume that the Hamiltonian of system (2. 1) is of the form 

lif (2, Y) = Hz (5, Y) + HI, (5, Y) + HK.+% (5, Y) + - - - 
( Z2) 

where 6, is either unity or two (see, e. g. I, 1811 and HI (r, y) is a homogeneous 
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pa~ynamial of pawer 1, 
We introduce the notation 

a, = ( -l)%rS, s 

PTj * = (-# pvj, 

E 1, . . ., n 

v =L: 1,. . ., p; j = 1, . . .) q 

Using the canonical ~~y~arn~~~ tra~farmat~an with aZlawance far f I.. 2) we can reduce 
the Ham~ltonian (2.2) to the normal farm up to the k -th order. Rejecting terms of 
order higher than the k -th, we represent the Hamiltanian af the model system in 
canonical polar variables as fallows: 

The system of equations that corresponds to (2,3) is of the farm 

rj’ = - 2 3 A,pvj*&sin &*, j= I,...,q 
v=x 

(2.4 

Below we assume that A, + 0 fv = 1, . _ ., p). 
T h e a t e m 2 , I, For the ~~~~tonian system (3.4) to have an increasing sal- 

utian af the type of invariant beam 

ri I- kjb (t), kj > 0, i = It * * *I q 

et* = (n / 2) sign Ag, E = 4, * * .t f&l 

% * = -(~~2~~~g~A~, q= Et@-+- 1, * * *, !J (0 < pof F”f 

it is necessary and sufficient that 

<Pzi”, G> - (Plj*, 423) > 0, i = f, f f ‘7 Q 

IA,\=g,iR,“, v==Ir..-rp (5% 61 

Plj* = (p1j”y * f -5 &:ai)~ PZj* t (P&bl~j9 * * -7 PW*) 
Gl = (gl, . . .v g,J, G, = (gps+r, . . -1 &dr gv > 0 

where P,j*, Gs (6 = 13) are vecta~~ of dimension p. when 8 = i and P - PO 
when E = 2, and g,, are same constants. 

The proof is similar to that of Theorem 1.1. 

Theorem 2. 2, For the Hamil~a~ian system (2,41 to have %I unstable parti- 

cular solution of the type of increasing beam 



On the stability of autonomous systems 251 

r,=k,b(t), k,>O, u= 1, . . ., q 
7-v = 0, v=g+l,...,g(o<q<q) 

0%* = (n / 2) sign A%, E = 1, . . ., p. 

C$* = - (a / 2) sign A,, q = p. + 1, . . ., F 

et* = f fc / 2, 5 = p + 1, * . -, p (0 < po < r; < p; p > 0) 

it is necessary and sufficient that Pm* and A, (Y = 1, . . ., p; u = 1, . . ., q) 
satisfy conditions (2.5) and (2.61, respectively, and that in addition 

pyn* = 0, v = 1 7 - * *t j.i; u = q + 1,. . .( g 

3 IPy>l, 5=;+11,...,~ 
I)==;+1 

We use the notation 

P* = 11 pvj* 11, v = 1, . . .( p; j = 1, . . .) g 

c,, = co1 {Cl, . . .) cqo, 0, . . .) 0) 

where C,, is an arbitrary column vector of dimension Q1 Qo < Q ’ 
T h e o r e m 2 . 3. For the Hamiltonian system (2.4) to have an integral of 

the form 

J VY + .j+rf~ = const (2.7) 

it is necessary and sufficient that the equality 

p*c,, = 0 (2.8) 

is satisfied. 
Proof. Equating to zero the derivative of (2.7) we obtain on the strength of 

the model system (2.4) a system of equations which must be satisfied by the constants 
CY 

5 p* c = 0, 
yc1 WY 

v=l,...,p 

The completion of proof is evident. 
A similar theorem is valid also for the model system (1.5) with the substitution 

of the equality [9] 
BC,, = 0, B = 11 bvj 1) 

Corollaries. 1”. Ifvector C,, with positive components cj > 0 which 
satisfies equality (2.8) exists, the equilibrium position of the model Hamiltonian sys- 

tem (2.4) is stable with respect to variables rlr . . . , rq.,~rQ+lr . . . , r, [lo]. 

2’. If the model Hamiltonian system (2.4) has two weak resonances (see [S] ) 
of the third order, the equilibrium position of that system is stable. 

3”. If the model Hamiltonian system ( 2.4) has three weak resonances of the third 
order, the equilibrium position of that system is stable. 

E x a m p 1 e. Let us consider the problem of oscillations of a satellite about the 
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relative equilibrium position on a circular orbit. It was shown in [ll] that in suit- 
able canonical variables the Hamiltonian of the linearized system of the considered 

problem reduces to the form 

Hs = - ‘Is (Es1 + ~121.11s) + ‘/a (Ess + WssThs) + =/a (S*2 + ass+) 

and that the double resonance 

0s -22r=o, 0s - 0s + wr = 0 

may be realized here, 
The corresponding model system expressed in canonical polar coordinates is of 

the form 
rj’ = a;A1frxsio &* + f$ A, Jfrx sin e2*, j = 1,2,3 
a, = -4, a2 = 0, as = -2, fJ1 = pa = 2, ps = -2 

or* = %Jlf (P81 @A* = 'ps - 'Pa - 91 

(2. 9) 

(the equations for 8,* are omitted here). 

By Theorem 2.1 system (2.9) has an increasing solution of the form 

‘j = kjb (0, kj > 0, i = 1,2,3 

8,* = (- 1)’ (n / 2) sign A,, Y = 14 

if 

kS E ga k g1- gz 
2eT,C& l’ ka= 2g,+gB k 11 h>k?l 

lAll=dV/k12k,, IA,[=g,/I/k,k,k, 
Setting 1 AS / Al 1 = A, after some transformations we obtain the condition 0 < 

A < flv Hence, when this inequality is satisfied, the equilibrium position of the 

model system (2.9) is unstable. 

The author thanks V. V. Rnmiantsev and the participants (in particular A. L. 

Kunitsyn) of the seminar chaired by him for discussing this subject. 
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